Ads
related to: 3d printing using thermoplastics technology applications project
Search results
Results From The WOW.Com Content Network
A desktop FFF printer made by Stratasys. Fused deposition modeling was developed by S. Scott Crump, co-founder of Stratasys, in 1988. [6] [7] With the 2009 expiration of the patent on this technology, [8] people could use this type of printing without paying Stratasys for the right to do so, opening up commercial, DIY, and open-source 3D printer applications.
Continuous Liquid Interface Production (CLIP; originally Continuous Liquid Interphase Printing) is a proprietary method of 3D printing that uses photo polymerization to create smooth-sided solid objects of a wide variety of shapes using resins.
3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. [1] [2] [3] It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, [4] with the material being added together (such as plastics, liquids or powder grains being fused), typically layer by layer.
The applications of 3D printing are vast due to the ability to print complex pieces with a use of a wide range of materials. Materials can range from plastic and polymers as thermoplastic filaments, to resins, and even stem cells.
3D printing filament in different colours with models created using the filament. 3D printing filament is the thermoplastic feedstock for fused deposition modeling 3D printers . There are many types of filament available with different properties.
Stereolithography uses a high intensity light projector, usually using DLP technology, with a photosensitive polymer resin. It will project the profile of an object to build a single layer, curing the resin into a solid shape. Then the printer will move the object out of the way by a small amount and project the profile of the next layer.