Search results
Results From The WOW.Com Content Network
Cell migration is a central process in the development and maintenance of multicellular organisms.Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular directions to specific locations.
Sperm motility is dependent on several metabolic pathways and regulatory mechanisms. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into an outer and an inner arm. Outer and inner arm plays different roles in the production and regulation of flagellar motility: the outer arm increase the bea
Marker-based and markerless pose estimation approaches have advantages and disadvantages, so the method that is best suited for collecting kinematic data may be largely dependent on the animal of study. Marker-based tracking methods tend to be more portable than markerless methods, which require precise camera calibration. [50]
Our bodies have 3 billion genetic building blocks, or base pairs, that make us who we are. And of those 3 billion base pairs, only a tiny amount are unique to us, making us about 99.9% genetically ...
Different dialysis tubing or flat membranes are produced and characterized as differing molecular-weight cutoffs (MWCO) ranging from 1–1,000,000 kDa. The MWCO determination is the result of the number and average size of the pores created during the production of the dialysis membrane.
The universe of the Game of Life is an infinite, two-dimensional orthogonal grid of square cells, each of which is in one of two possible states, live or dead (or populated and unpopulated, respectively). Every cell interacts with its eight neighbours, which are the cells that are horizontally, vertically, or diagonally adjacent. At each step ...
Two trophozoites attaching to each other to form a gamont. Once attached to a epithelial cell, it grows vegetatively and becomes a trophozoite (also called cephalin or chepalont). After 48 hours, a cell with two structures can be seen: the epimerite, attaching to the host cell and the second part (back) of the cell.
The different arrangements of bacterial flagella: A-Monotrichous; B-Lophotrichous; C-Amphitrichous; D-Peritrichous. Bacteria can use flagella in different ways to generate different kinds of movement. Many bacteria (such as E. coli) have two distinct modes of movement