Search results
Results From The WOW.Com Content Network
To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number. To test divisibility by any number expressed as the product of prime factors p 1 n p 2 m p 3 q {\displaystyle p_{1}^{n}p_{2}^{m}p_{3}^{q}} , we can separately test for ...
The first condition is the Fermat primality test using base 2. In general, if p ≡ a (mod x 2 +4), where a is a quadratic non-residue (mod x 2 +4) then p should be prime if the following conditions hold: 2 p−1 ≡ 1 (mod p), f(1) p+1 ≡ 0 (mod p), f(x) k is the k-th Fibonacci polynomial at x.
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
For example, if a = 2 and p = 7, then 2 7 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols: [1] [2] ().
A sanity test can refer to various orders of magnitude and other simple rule-of-thumb devices applied to cross-check mathematical calculations. For example: If one were to attempt to square 738 and calculated 54,464, a quick sanity check could show that this result cannot be true. Consider that 700 < 738, yet 700 2 = 7 2 × 100 2 = 490,000 ...
6: an even number that passes the divisibility test for 3. 7: sum of all the digits is a multiple of 7. 5: successive subtraction of final two digits from all the other digits yields a multiple of 5. 12: an even number that passes the divisibility test for 5. Base 11 (a prime base, for comparison): 2: sum of all the digits is a multiple of 2.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.