When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test the divisibility of a number by a power of 2 or a power of 5 (2 n or 5 n, in which n is a positive integer), one only need to look at the last n digits of that number. To test divisibility by any number expressed as the product of prime factors p 1 n p 2 m p 3 q {\displaystyle p_{1}^{n}p_{2}^{m}p_{3}^{q}} , we can separately test for ...

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The first condition is the Fermat primality test using base 2. In general, if p ≡ a (mod x 2 +4), where a is a quadratic non-residue (mod x 2 +4) then p should be prime if the following conditions hold: 2 p−1 ≡ 1 (mod p), f(1) p+1 ≡ 0 (mod p), f(x) k is the k-th Fibonacci polynomial at x.

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  5. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    For example, if a = 2 and p = 7, then 2 7 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols: [1] [2] ().

  6. Sanity check - Wikipedia

    en.wikipedia.org/wiki/Sanity_check

    A sanity test can refer to various orders of magnitude and other simple rule-of-thumb devices applied to cross-check mathematical calculations. For example: If one were to attempt to square 738 and calculated 54,464, a quick sanity check could show that this result cannot be true. Consider that 700 < 738, yet 700 2 = 7 2 × 100 2 = 490,000 ...

  7. Talk:Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Talk:Divisibility_rule

    6: an even number that passes the divisibility test for 3. 7: sum of all the digits is a multiple of 7. 5: successive subtraction of final two digits from all the other digits yields a multiple of 5. 12: an even number that passes the divisibility test for 5. Base 11 (a prime base, for comparison): 2: sum of all the digits is a multiple of 2.

  8. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  9. Digit sum - Wikipedia

    en.wikipedia.org/wiki/Digit_sum

    Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.