When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring ...

  3. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  4. Recursive largest first algorithm - Wikipedia

    en.wikipedia.org/wiki/Recursive_largest_first...

    The Recursive Largest First (RLF) algorithm is a heuristic for the NP-hard graph coloring problem.It was originally proposed by Frank Leighton in 1979. [1]The RLF algorithm assigns colors to a graph’s vertices by constructing each color class one at a time.

  5. DSatur - Wikipedia

    en.wikipedia.org/wiki/DSatur

    DSatur is known to be exact for bipartite graphs, [1] as well as for cycle and wheel graphs. [2] In an empirical comparison by Lewis in 2021, DSatur produced significantly better vertex colourings than the greedy algorithm on random graphs with edge probability p = 0.5 {\displaystyle p=0.5} , while in turn producing significantly worse ...

  6. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  7. Weisfeiler Leman graph isomorphism test - Wikipedia

    en.wikipedia.org/wiki/Weisfeiler_Leman_graph...

    In graph theory, the Weisfeiler Leman graph isomorphism test is a heuristic test for the existence of an isomorphism between two graphs G and H. [1] It is a generalization of the color refinement algorithm and has been first described by Weisfeiler and Leman in 1968. [ 2 ]

  8. Register allocation - Wikipedia

    en.wikipedia.org/wiki/Register_allocation

    Graph-coloring allocation is the predominant approach to solve register allocation. [ 17 ] [ 18 ] It was first proposed by Chaitin et al. [ 4 ] In this approach, nodes in the graph represent live ranges ( variables , temporaries , virtual/symbolic registers) that are candidates for register allocation.

  9. Complete coloring - Wikipedia

    en.wikipedia.org/wiki/Complete_coloring

    Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.