Ads
related to: k core of a graph paper
Search results
Results From The WOW.Com Content Network
The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph. Degeneracy is also known as the k-core number, [1] width, [2] and linkage, [3] and is essentially the same as ...
Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.
As another component of the Dulmage–Mendelsohn decomposition, Dulmage and Mendelsohn defined the core of a graph to be the union of its maximum matchings. [5] However, this concept should be distinguished from the core in the sense of graph homomorphisms, and from the k-core formed by the removal of low-degree vertices.
It is also useful to know that k-cohesive graphs (or k-components) are always a subgraph of a k-core, although a k-core is not always k-cohesive. A k-core is simply a subgraph in which all nodes have at least k neighbors but it need not even be connected.
The converse graph is a synonym for the transpose graph; see transpose. core 1. A k-core is the induced subgraph formed by removing all vertices of degree less than k, and all vertices whose degree becomes less than k after earlier removals. See degeneracy. 2. A core is a graph G such that every graph homomorphism from G to itself is an ...
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
The complete graph on n vertices is denoted by K n.Some sources claim that the letter K in this notation stands for the German word komplett, [4] but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.
It was shown in [4] that a graph G is word-representable if it is k-representable for some k, that is, G can be represented by a word having k copies of each letter. Moreover, if a graph is k-representable then it is also (k + 1)-representable. Thus, the notion of the representation number of a graph, as the minimum k such that a graph is word ...