Search results
Results From The WOW.Com Content Network
Blast furnaces differ from bloomeries and reverberatory furnaces in that in a blast furnace, flue gas is in direct contact with the ore and iron, allowing carbon monoxide to diffuse into the ore and reduce the iron oxide. The blast furnace operates as a countercurrent exchange process whereas a bloomery does not.
A tuyere, seen from inside a blast furnace An old tuyere in Nok, Nigeria. A tuyere or tuyère (French pronunciation:; English: / t w iː ˈ j ɛər /) [1] [2] is a tube, nozzle or pipe allowing the blowing of air into a furnace or hearth. [3] Air or oxygen is injected into a hearth under pressure from bellows or a blowing engine or other devices.
Blast furnace gas (BFG) [1] is a by-product of blast furnaces that is generated when the iron ore is reduced with coke to metallic iron. It has a very low heating value , about 3.5 MJ/m 3 (93 BTU /cu.ft), [ 2 ] because it consists of about 51 vol% nitrogen and 22 vol% carbon dioxide , which are not flammable.
For example, a blast furnace may have several "stoves" or "checkers" full of refractory fire brick. The hot gas from the furnace is ducted through the brickwork for some interval, say one hour, until the brick reaches a high temperature. Valves then operate and switch the cold intake air through the brick, recovering the heat for use in the ...
Different fuels with different levels of energy and molar constituents will have different adiabatic flame temperatures. Constant pressure flame temperature of a number of fuels, with air Nitromethane versus isooctane flame temperature and pressure. We can see by the following figure why nitromethane (CH 3 NO 2) is often used as a power boost ...
6 kg (explosive mass) Blast AT Mine: 2a – Mine Explosion pressure activated under any wheel or track location. ... Composite Armor tested in accordance with STANAG ...
A furnace needs no less than two stoves, but may have three. One of the stoves is 'on gas', receiving hot gases from the furnace top and heating the checkerwork inside, whilst the other is 'on blast', receiving cold air from the blowers, heating it and passing it to the blast furnace.
The blast furnace method is expected to survive into the 22nd century because of its efficient rate of iron production at competitive costs compared with other iron-making methods. Blast furnaces keep on improving with adaptations arising from new technologies driven by rising global demand, yet the main chemical process remains the same.