Search results
Results From The WOW.Com Content Network
Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix.
Although a translation is a non-linear transformation in a 2-D or 3-D Euclidean space described by Cartesian coordinates (i.e. it can't be combined with other transformations while preserving commutativity and other properties), it becomes, in a 3-D or 4-D projective space described by homogeneous coordinates, a simple linear transformation (a ...
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.
Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
The camera matrix derived in the previous section has a null space which is spanned by the vector = This is also the homogeneous representation of the 3D point which has coordinates (0,0,0), that is, the "camera center" (aka the entrance pupil; the position of the pinhole of a pinhole camera) is at O.
Not every triangulation method assures invariance, at least not for general types of coordinate transformations. For a homogeneous representation of 3D coordinates, the most general transformation is a projective transformation, represented by a matrix . If the homogeneous coordinates are transformed according to
This may be written in terms of homogeneous coordinates in the following way: A homography φ may be defined by a nonsingular (n+1) × (n+1) matrix [a i,j], called the matrix of the homography. This matrix is defined up to the multiplication by a nonzero element of K.