Search results
Results From The WOW.Com Content Network
The demagnetizing field, also called the stray field (outside the magnet), is the magnetic field (H-field) [1] generated by the magnetization in a magnet.The total magnetic field in a region containing magnets is the sum of the demagnetizing fields of the magnets and the magnetic field due to any free currents or displacement currents.
This demagnetizing field is applied opposite to the original saturating field. There are however different definitions of coercivity, depending on what counts as 'demagnetized', thus the bare term "coercivity" may be ambiguous: The normal coercivity, H Cn, is the H field required to reduce the magnetic flux (average B field inside the material ...
Since the magnetization in the direction of the field is M s cos φ, these curves are usually plotted in the normalized form m h vs. h, where m h = cos φ is the component of magnetization in the direction of the field. An example is shown in Figure 2. The solid red and blue curves connect stable magnetization directions.
If the magnetic field is now reduced monotonically, M follows a different curve. At zero field strength, the magnetization is offset from the origin by an amount called the remanence. If the H-M relationship is plotted for all strengths of applied magnetic field the result is a hysteresis loop called the main loop.
The mines detected the increase in the magnetic field when the steel in a ship concentrated the Earth's magnetic field over it. Admiralty scientists, including Goodeve, developed a number of systems to induce a small "N-pole up" field into the ship to offset this effect, meaning that the net field was the same as the background.
where H 0 is the applied magnetic field due only to the free currents and H d is the demagnetizing field due only to the bound currents. The magnetic H-field, therefore, re-factors the bound current in terms of "magnetic charges". The H field lines loop only around "free current" and, unlike the magnetic B field, begins and ends near magnetic ...
The effective field H eff is a combination of the external magnetic field, the demagnetizing field, and various internal magnetic interactions involving quantum mechanical effects, which is typically defined as the functional derivative of the magnetic free energy with respect to the local magnetization M. To solve this equation, additional ...
The demagnetizing energy is balanced by the energy of the exchange interaction, which tends to keep spins aligned. There is a critical size at which the balance tips in favor of the demagnetizing field and the multidomain state is favored. Most calculations of the upper size limit for the single-domain state identify it with this critical size.