Search results
Results From The WOW.Com Content Network
It is not known whether varieties with these properties exist over the algebraic closure of the rational numbers. Uniruledness is a geometric property (it is unchanged under field extensions), whereas ruledness is not. For example, the conic x 2 + y 2 + z 2 = 0 in P 2 over the real numbers R is uniruled but not ruled.
Every rational variety, including the projective spaces, is rationally connected, but the converse is false. The class of the rationally connected varieties is thus a generalization of the class of the rational varieties. Unirational varieties are rationally connected, but it is not known if the converse holds.
Castelnuovo's theorem implies that to construct a minimal model for a smooth surface, we simply contract all the −1-curves on the surface, and the resulting variety Y is either a (unique) minimal model with K nef, or a ruled surface (which is the same as a 2-dimensional Fano fiber space, and is either a projective plane or a ruled surface ...
2-dimensional section of Reeb foliation 3-dimensional model of Reeb foliation. In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space R n into the cosets x + R p of the standardly embedded ...
For example, if : is a dominant rational map between smooth projective varieties of the same dimension, then the pullback of a big line bundle on Y is big on X. (At first sight, the pullback is only a line bundle on the open subset of X where f is a morphism, but this extends uniquely to a line bundle on all of X .)
In dimension 3, there are smooth complex Fano varieties which are not rational, for example cubic 3-folds in P 4 (by Clemens - Griffiths) and quartic 3-folds in P 4 (by Iskovskikh - Manin). Iskovskih ( 1977 , 1978 , 1979 ) classified the smooth Fano 3-folds with second Betti number 1 into 17 classes, and Mori & Mukai (1981) classified the ...
Chern numbers of minimal complex surfaces. The Enriques–Kodaira classification of compact complex surfaces states that every nonsingular minimal compact complex surface is of exactly one of the 10 types listed on this page; in other words, it is one of the rational, ruled (genus > 0), type VII, K3, Enriques, Kodaira, toric, hyperelliptic, properly quasi-elliptic, or general type surfaces.
In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space P n. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z 0 Z 2 = Z 2 1, and for n = 3 it is the twisted cubic.