When.com Web Search

  1. Ad

    related to: compressed high intensity radar pulse sensor

Search results

  1. Results From The WOW.Com Content Network
  2. Chirp compression - Wikipedia

    en.wikipedia.org/wiki/Chirp_compression

    The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power.

  3. Pulse compression - Wikipedia

    en.wikipedia.org/wiki/Pulse_compression

    Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.

  4. Chirp - Wikipedia

    en.wikipedia.org/wiki/Chirp

    The spectrogram plot demonstrates the linear rate of change in frequency as a function of time, in this case from 0 to 7 kHz, repeating every 2.3 seconds. The intensity of the plot is proportional to the energy content in the signal at the indicated frequency and time.

  5. Continuous-wave radar - Wikipedia

    en.wikipedia.org/wiki/Continuous-wave_radar

    Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect , which causes the received signal to have a different frequency from the transmitted signal ...

  6. Radar signal characteristics - Wikipedia

    en.wikipedia.org/wiki/Radar_signal_characteristics

    The pulse width must be long enough to ensure that the radar emits sufficient energy so that the reflected pulse is detectable by its receiver. The amount of energy that can be delivered to a distant target is the product of two things; the peak output power of the transmitter, and the duration of the transmission.

  7. Radar engineering - Wikipedia

    en.wikipedia.org/wiki/Radar_engineering

    Pulse-Doppler radar sensors are therefore more suited for long-range detection, while FMCW radar sensors are more suited for short-range detection. Monopulse : A monopulse feed network, as shown in Fig. 2, increases the angular accuracy to a fraction of the beamwidth by comparing echoes, which originate from a single radiated pulse and which ...

  8. AN/MPQ-64 Sentinel - Wikipedia

    en.wikipedia.org/wiki/AN/MPQ-64_Sentinel

    The Sentinel A4 is a complete redesign of the sensor that uses digital processing and solid-state antenna modules based on gallium nitride (GAN) transmitters. The scalable modular architecture is shared with the long-range AN/TPY-4 radar, which has 1000 individually controlled elements and uses GPU computing for signal processing. [6]

  9. ASR-11 - Wikipedia

    en.wikipedia.org/wiki/ASR-11

    The first advantage the ASR-11 offers is the use of a low peak-power, solid state transmitter with pulse compression technology, replacing the ASR-9's high peak-power, short pulse power system. This gives the radar the ability to provide the same amount of energy to a target at long range while making the radar less sensitive at shorter ranges.