When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anderson–Darling test - Wikipedia

    en.wikipedia.org/wiki/Anderson–Darling_test

    The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is ...

  3. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. [1]

  4. Newman–Keuls method - Wikipedia

    en.wikipedia.org/wiki/Newman–Keuls_method

    The Newman–Keuls or Student–Newman–Keuls (SNK) method is a stepwise multiple comparisons procedure used to identify sample means that are significantly different from each other. [1]

  5. Noncentral t-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_t-distribution

    This family of distributions is used in data modeling to capture various tail behaviors. The location/scale generalization of the central t-distribution is a different distribution from the noncentral t-distribution discussed in this article. In particular, this approximation does not respect the asymmetry of the noncentral t-distribution.

  6. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  7. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]

  8. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.

  9. Wald test - Wikipedia

    en.wikipedia.org/wiki/Wald_test

    In statistics, the Wald test (named after Abraham Wald) assesses constraints on statistical parameters based on the weighted distance between the unrestricted estimate and its hypothesized value under the null hypothesis, where the weight is the precision of the estimate.

  1. Related searches kegunaan corong buchner metode uji normalitas data dengan excel non

    kegunaan corong buchner metode uji normalitas data dengan excel non profit