Search results
Results From The WOW.Com Content Network
In object-oriented programming, the factory method pattern is a design pattern that uses factory methods to deal with the problem of creating objects without having to specify their exact classes. Rather than by calling a constructor , this is accomplished by invoking a factory method to create an object.
The prototype design pattern is one of the 23 Gang of Four design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse. [2]: 117 The prototype design pattern solves problems like: [3]
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
C++ does not have the keyword super that a subclass can use in Java to invoke the superclass version of a method that it wants to override. Instead, the name of the parent or base class is used followed by the scope resolution operator. For example, the following code presents two classes, the base class Rectangle, and the derived class Box.
The mediator [1] design pattern is one of the twenty-three well-known design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse.
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
The bridge pattern can also be thought of as two layers of abstraction. When there is only one fixed implementation, this pattern is known as the Pimpl idiom in the C++ world. The bridge pattern is often confused with the adapter pattern, and is often implemented using the object adapter pattern; e.g., in the Java code below.
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.