Ad
related to: introduction to waves ppt free
Search results
Results From The WOW.Com Content Network
A standing wave, also known as a stationary wave, is a wave whose envelope remains in a constant position. This phenomenon arises as a result of interference between two waves traveling in opposite directions. The sum of two counter-propagating waves (of equal amplitude and frequency) creates a standing wave. Standing waves commonly arise when ...
In fluid dynamics and nautical terminology, a breaking wave or breaker is a wave with enough energy to "break" at its peak, reaching a critical level at which linear energy transforms into wave turbulence energy with a distinct forward curve. At this point, simple physical models that describe wave dynamics often become invalid, particularly ...
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers, or more.
Waves are usually described by variations in some parameters through space and time—for example, height in a water wave, pressure in a sound wave, or the electromagnetic field in a light wave. The value of this parameter is called the amplitude of the wave and the wave itself is a function specifying the amplitude at each point.
Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to ...
The concept of a magnon was introduced in 1930 by Felix Bloch [1] in order to explain the reduction of the spontaneous magnetization in a ferromagnet.At absolute zero temperature (0 K), a Heisenberg ferromagnet reaches the state of lowest energy (so-called ground state), in which all of the atomic spins (and hence magnetic moments) point in the same direction.
Waves in plasmas can be classified as electromagnetic or electrostatic according to whether or not there is an oscillating magnetic field. Applying Faraday's law of induction to plane waves , we find k × E ~ = ω B ~ {\displaystyle \mathbf {k} \times {\tilde {\mathbf {E} }}=\omega {\tilde {\mathbf {B} }}} , implying that an electrostatic wave ...
The phase velocity of an electromagnetic wave in such a medium is = = + For the case of an Alfvén wave = + where is the Alfvén wave group velocity. (The formula for the phase velocity assumes that the plasma particles are moving at non-relativistic speeds, the mass-weighted particle velocity is zero in the frame of reference, and the wave is ...