When.com Web Search

  1. Ad

    related to: dynamical system theory

Search results

  1. Results From The WOW.Com Content Network
  2. Dynamical systems theory - Wikipedia

    en.wikipedia.org/wiki/Dynamical_systems_theory

    Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems .

  3. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    The study of dynamical systems is the focus of dynamical systems theory, which has applications to a wide variety of fields such as mathematics, physics, [4] [5] biology, [6] chemistry, engineering, [7] economics, [8] history, and medicine.

  4. List of dynamical systems and differential equations topics

    en.wikipedia.org/wiki/List_of_dynamical_systems...

    Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...

  5. Hamiltonian system - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_system

    A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.

  6. Category:Dynamical systems - Wikipedia

    en.wikipedia.org/wiki/Category:Dynamical_systems

    Dynamical systems deals with the study of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology.

  7. Linear dynamical system - Wikipedia

    en.wikipedia.org/wiki/Linear_dynamical_system

    Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...

  8. LaSalle's invariance principle - Wikipedia

    en.wikipedia.org/wiki/LaSalle's_invariance_principle

    LaSalle's invariance principle (also known as the invariance principle, [1] Barbashin-Krasovskii-LaSalle principle, [2] or Krasovskii-LaSalle principle) is a criterion for the asymptotic stability of an autonomous (possibly nonlinear) dynamical system.

  9. Combinatorics and dynamical systems - Wikipedia

    en.wikipedia.org/wiki/Combinatorics_and...

    The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.