Ad
related to: dynamical system theory
Search results
Results From The WOW.Com Content Network
Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems .
The study of dynamical systems is the focus of dynamical systems theory, which has applications to a wide variety of fields such as mathematics, physics, [4] [5] biology, [6] chemistry, engineering, [7] economics, [8] history, and medicine.
Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...
A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.
Dynamical systems deals with the study of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology.
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
LaSalle's invariance principle (also known as the invariance principle, [1] Barbashin-Krasovskii-LaSalle principle, [2] or Krasovskii-LaSalle principle) is a criterion for the asymptotic stability of an autonomous (possibly nonlinear) dynamical system.
The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.