When.com Web Search

  1. Ads

    related to: hierarchical model statistics

Search results

  1. Results From The WOW.Com Content Network
  2. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  3. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]

  4. Hierarchical database model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_database_model

    A hierarchical database model is a data model in which the data is organized into a tree-like structure. The data are stored as records which is a collection of one or more fields. Each field contains a single value, and the collection of fields in a record defines its type.

  5. Hierarchical generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_generalized...

    Hierarchical generalized linear model, requiring clustered data, is able to deal with complicated process. Engineers can use this model to find out and analyze important subprocesses, and at the same time, evaluate the influences of these subprocesses on final performance.

  6. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().

  7. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  8. Data hierarchy - Wikipedia

    en.wikipedia.org/wiki/Data_hierarchy

    Data field value = Jeffrey Tan The above description is a view of data as understood by a user e.g. a person working in Human Resource Department. The above structure can be seen in the hierarchical model, which is one way to organize data in a database. [2] In terms of data storage, data fields are made of bytes and these in turn are made up ...

  9. Random effects model - Wikipedia

    en.wikipedia.org/wiki/Random_effects_model

    In econometrics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables.It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy.