Ad
related to: formula of mean in statistics
Search results
Results From The WOW.Com Content Network
A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. [1] There are several kinds of means (or "measures of central tendency") in mathematics, especially in statistics.
In mathematics and statistics, the arithmetic mean (/ ˌ æ r ɪ θ ˈ m ɛ t ɪ k / arr-ith-MET-ik), arithmetic average, or just the mean or average (when the context is clear) is the sum of a collection of numbers divided by the count of numbers in the collection. [1]
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
Average of chords. In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list.
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics. If all the weights are equal, then the weighted mean is the same as the arithmetic mean .
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f ( x ) over the interval ( a , b ) is defined by: [ 1 ]
If the data points are normally distributed with mean 0 and variance , then the residual sum of squares has a scaled chi-squared distribution (scaled by the factor ), with n − 1 degrees of freedom. The degrees-of-freedom, here a parameter of the distribution, can still be interpreted as the dimension of an underlying vector subspace.