Ad
related to: fermat's last theorem statement
Search results
Results From The WOW.Com Content Network
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
Fermat's Last Theorem is a theorem in number theory, originally stated by Pierre de Fermat in 1637 and proven by Andrew Wiles in 1995. The statement of the theorem involves an integer exponent n larger than 2.
Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.
The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...
The Beal conjecture, a generalization of Fermat's Last Theorem proposing that if A, B, C, x, y, and z are positive integers with A x + B y = C z and x, y, z > 2, then A, B, and C have a common prime factor. The abc conjecture would imply that there are only finitely many counterexamples.
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory.He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Knight Commander of the Order of the British Empire in 2000. [1]
Fermat's Last Theorem is a popular science book (1997) by Simon Singh.It tells the story of the search for a proof of Fermat's Last Theorem, first conjectured by Pierre de Fermat in 1637, and explores how many mathematicians such as Évariste Galois had tried and failed to provide a proof for the theorem.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]