Ad
related to: stroma function in photosynthesis
Search results
Results From The WOW.Com Content Network
Stroma, in botany, refers to the colorless fluid surrounding the grana within the chloroplast. [ 1 ] Within the stroma are grana (stacks of thylakoid ), the sub-organelles where photosynthesis is started [ 2 ] before the chemical changes are completed in the stroma.
In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b 6 f uses electrons from PSII and energy from PSI [citation needed] to pump protons from the stroma to the lumen. The ...
In higher plants thylakoids are organized into a granum-stroma membrane assembly. A granum (plural grana) is a stack of thylakoid discs. Chloroplasts can have from 10 to 100 grana. Grana are connected by stroma thylakoids, also called intergranal thylakoids or lamellae. Grana thylakoids and stroma thylakoids can be distinguished by their ...
The Calvin cycle is present in all photosynthetic eukaryotes and also many photosynthetic bacteria. In plants, these reactions occur in the stroma, the fluid-filled region of a chloroplast outside the thylakoid membranes. These reactions take the products (ATP and NADPH) of light-dependent reactions and perform further chemical processes on them.
In photosynthesis, the cytochrome b 6 f complex functions to mediate the transfer of electrons and of energy between the two photosynthetic reaction center complexes, Photosystem II and Photosystem I, while transferring protons from the chloroplast stroma across the thylakoid membrane into the lumen. [2]
Within the envelope membranes, in the region called the stroma, there is a system of interconnecting flattened membrane compartments, called the thylakoids.The thylakoid membrane is quite similar in lipid composition to the inner envelope membrane, containing 78% galactolipids, 15.5% phospholipids and 6.5% sulfolipids in spinach chloroplasts. [3]
Light-dependent reactions of photosynthesis at the thylakoid membrane. Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons.
The N-terminus of the chlorophyll a-b binding protein extends into the stroma where it is involved with adhesion of granal membranes and photo-regulated by reversible phosphorylation of its threonine residues. [2] Both these processes are believed to mediate the distribution of excitation energy between photosystems I and II.