Search results
Results From The WOW.Com Content Network
3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).
The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) ( Gutman 1991 ). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry .
Example of a domain transformation from cartesian to polar. Example 2c. The domain is D = {x 2 + y 2 ≤ 4}, that is a circumference of radius 2; it's evident that the covered angle is the circle angle, so φ varies from 0 to 2 π, while the crown radius varies from 0 to 2 (the crown with the inside radius null is just a circle). Example 2d.
1 Examples and types of graphs. 2 Graph coloring. 3 Paths and cycles. 4 Trees. Toggle Trees subsection. ... This is a list of graph theory topics, by Wikipedia page.
Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige or to explore rumor spreading, notably through the use of social network analysis software. Under the umbrella of social networks are many different types of graphs. [ 17 ]
A stronger definition is: given an integer n, a hypergraph is called n-uniform if all its hyperedges contain exactly n vertices. An n-uniform hypergraph is called n-partite if its vertex set V can be partitioned into n subsets such that each hyperedge contains exactly one element from each subset. [4]
Independently of the work in algebraic graph theory, Potts began studying the partition function of certain models in statistical mechanics in 1952. The work by Fortuin and Kasteleyn [ 9 ] on the random cluster model , a generalisation of the Potts model , provided a unifying expression that showed the relation to the Tutte polynomial.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.