Ads
related to: how to factor algebraic equations with steps
Search results
Results From The WOW.Com Content Network
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
In practice, most algebraic equations of interest have integer or rational coefficients, and one may want a factorization with factors of the same kind. The fundamental theorem of arithmetic may be generalized to this case, stating that polynomials with integer or rational coefficients have the unique factorization property .
Bairstow's algorithm inherits the local quadratic convergence of Newton's method, except in the case of quadratic factors of multiplicity higher than 1, when convergence to that factor is linear. A particular kind of instability is observed when the polynomial has odd degree and only one real root.
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.
This follows from the left side of the equation being equal to zero, requiring the right side to equal zero as well, and so the vector sum of a + b (the long diagonal of the rhombus) dotted with the vector difference a - b (the short diagonal of the rhombus) must equal zero, which indicates the diagonals are perpendicular.
Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...