Search results
Results From The WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
The time complexity of operations in the adjacency list representation can be improved by storing the sets of adjacent vertices in more efficient data structures, such as hash tables or balanced binary search trees (the latter representation requires that vertices are identified by elements of a linearly ordered set, such as integers or ...
In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...
The primitive graph operations that the algorithm uses are to enumerate the vertices of the graph, to store data per vertex (if not in the graph data structure itself, then in some table that can use vertices as indices), to enumerate the out-neighbours of a vertex (traverse edges in the forward direction), and to enumerate the in-neighbours of a vertex (traverse edges in the backward ...
They can, for example, be used to represent sparse graphs without incurring the space overhead from storing the many zero entries in the adjacency matrix of the sparse graph. In the following section the adjacency matrix is assumed to be represented by an array data structure so that zero and non-zero entries are all directly represented in ...
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
The space complexity of an algorithm or a data structure is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely. [ 1 ]
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.