Search results
Results From The WOW.Com Content Network
The curvature of the Earth is evident in the horizon across the image, and the bases of the buildings on the far shore are below that horizon and hidden by the sea. The simplest model for the shape of the entire Earth is a sphere. The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius ...
[87] [88] Earth's shape also has local topographic variations; the largest local variations, like the Mariana Trench (10,925 metres or 35,843 feet below local sea level), [89] shortens Earth's average radius by 0.17% and Mount Everest (8,848 metres or 29,029 feet above local sea level) lengthens it by 0.14%.
The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.
Earth's circumference is the distance around Earth. Measured around the equator, it is 40,075.017 km (24,901.461 mi). Measured passing through the poles, the circumference is 40,007.863 km (24,859.734 mi). [1] Treating the Earth as a sphere, its circumference would be its single most important measurement. [2]
A "true circumnavigation" of Earth is defined, in order to account for the shape of Earth, to be about 2.5 times as long, including a crossing of the equator, at about 40,000 km (25,000 mi). [24] On the flat Earth model, the ratios would require the Antarctic Circle to be 2.5 times the length of the circumnavigation, or 2.5 × 2.5 = 6.25 times ...
Equal Earth: Pseudocylindrical Equal-area Bojan Šavrič, Tom Patterson, Bernhard Jenny Inspired by the Robinson projection, but retains the relative size of areas. 2011 Natural Earth: Pseudocylindrical Compromise Tom Patterson: Originally by interpolation of tabulated values. Now has a polynomial. 1973 Tobler hyperelliptical: Pseudocylindrical ...
as the shape of the geoid, the mean sea level of the world ocean; or; as the shape of Earth's land surface as it rises above and falls below the sea. As the science of geodesy measured Earth more accurately, the shape of the geoid was first found not to be a perfect sphere but to approximate an oblate spheroid, a specific type of ellipsoid.
[1] [2] Many globes are made with a circumference of one metre, so they are models of the Earth at a scale of 1:40 million. In imperial units, many globes are made with a diameter of one foot [citation needed] (about 30 cm), yielding a circumference of 3.14 feet (about 96 cm) and a scale of 1:42 million. Globes are also made in many other sizes.