Search results
Results From The WOW.Com Content Network
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The measurement uncertainty budget is determined once and remains constant. With a constant measurement uncertainty budget, complete data records can now be acquired. The measurement uncertainty applies to every single measurement point. If the measurement uncertainty is constant, this simplifies the further processing based on the data records.
Essentially, the mean is the location of the PDF on the real number line, and the variance is a description of the scatter or dispersion or width of the PDF. To illustrate, Figure 1 shows the so-called Normal PDF , which will be assumed to be the distribution of the observed time periods in the pendulum experiment.
In a typical gas chromatography analysis, isotopic dilution can decrease the uncertainty of the measurement results from 5% to 1%. It can also be used in mass spectrometry (commonly referred to as isotopic dilution mass spectrometry or IDMS), in which the isotopic ratio can be determined with precision typically better than 0.25%.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...