When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    Example: find the square root of 75. 75 = 75 × 10 2 · 0, so a is 75 and n is 0. From the multiplication tables, the square root of the mantissa must be 8 point something because a is between 8×8 = 64 and 9×9 = 81, so k is 8; something is the decimal representation of R.

  3. Fast inverse square root - Wikipedia

    en.wikipedia.org/wiki/Fast_inverse_square_root

    Lighting and reflection calculations, as in the video game OpenArena, use the fast inverse square root code to compute angles of incidence and reflection.. Fast inverse square root, sometimes referred to as Fast InvSqrt() or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in ...

  4. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    /// Performs a Karatsuba square root on a `u64`. pub fn u64_isqrt (mut n: u64)-> u64 {if n <= u32:: MAX as u64 {// If `n` fits in a `u32`, let the `u32` function handle it. return u32_isqrt (n as u32) as u64;} else {// The normalization shift satisfies the Karatsuba square root // algorithm precondition "a₃ ≥ b/4" where a₃ is the most ...

  5. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of Newton's method are approximately 26214, 24904, 23658, 22476, decreasing slowly, with only the 200th ...

  6. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed before entering the loop). Primitive recursive functions form a strict subset of those general recursive ...

  7. For loop - Wikipedia

    en.wikipedia.org/wiki/For_loop

    In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...

  8. LOOP (programming language) - Wikipedia

    en.wikipedia.org/wiki/LOOP_(programming_language)

    LOOP is a simple register language that precisely captures the primitive recursive functions. [1] The language is derived from the counter-machine model.Like the counter machines the LOOP language comprises a set of one or more unbounded registers, each of which can hold a single non-negative integer.

  9. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.

  1. Related searches shape of square root function in c++ 8 program for loop example video

    integer square root formulashape of square root function in c++ 8 program for loop example video youtube
    isqrt square root