Search results
Results From The WOW.Com Content Network
In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material. [ 1 ] [ 2 ] [ 3 ] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus , ultimate tensile strength , thermal conductivity , and electrical conductivity . [ 3 ]
In crystallography, materials science and metallurgy, Vegard's law is an empirical finding (heuristic approach) resembling the rule of mixtures.In 1921, Lars Vegard discovered that the lattice parameter of a solid solution of two constituents is approximately a weighted mean of the two constituents' lattice parameters at the same temperature: [1] [2]
Richmann's law, [1] [2] sometimes referred to as Richmann's rule, [3] Richmann's mixing rule, [4] Richmann's rule of mixture [5] or Richmann's law of mixture, [6] is a physical law for calculating the mixing temperature when pooling multiple bodies. [5]
Concepts such as the normality of plastic flow to the yield surface and flow rules for plasticity were introduced by Prandtl (1924) [12] [full citation needed] and Reuss (1930). [13] In 1932, Hohenemser and Prager [ 14 ] proposed the first model for slow viscoplastic flow.
Bernoulli's equation; Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy of equations; Bessel's differential equation; Boltzmann equation; Borda–Carnot equation; Burgers' equation; Darcy–Weisbach equation; Dirac equation. Dirac equation in the algebra of physical space; Dirac–Kähler equation; Doppler equations; Drake equation (aka ...
Alligation is an old and practical method of solving arithmetic problems related to mixtures of ingredients. There are two types of alligation: alligation medial, used to find the quantity of a mixture given the quantities of its ingredients, and alligation alternate, used to find the amount of each ingredient needed to make a mixture of a given quantity.
The rule of 25 is just a different way to look at another popular retirement rule, the 4% rule. It flips the equation (100/4% = 25) to emphasize a different part of the retirement planning process ...
The Lorentz rule was proposed by H. A. Lorentz in 1881: [5] = + The Lorentz rule is only analytically correct for hard sphere systems. Intuitively, since , loosely reflect the radii of particle i and j respectively, their averages can be said to be the effective radii between the two particles at which point repulsive interactions become severe.