Search results
Results From The WOW.Com Content Network
Colt Peacemaker, showing discoloration from case-hardening. Case-hardening or carburization is the process of introducing carbon to the surface of a low-carbon iron, or more commonly a low-carbon steel object, in order to harden the surface. Iron which has a carbon content greater than ~0.02% is known as steel.
Quench polish quench (QPQ) is a specialized type of nitrocarburizing case hardening that increases corrosion resistance. It is sometimes known by the brand name of Tufftride, Tenifer or Melonite. [1] Three steps are involved: nitrocarburize ("quench"), polish, and post-oxidize ("quench"). [2]
Carbonitriding forms a hard, wear-resistant case, is typically 0.07 mm to 0.5 mm thick, and generally has higher hardness than a carburized case. Case depth is tailored to the application; a thicker case increases the wear life of the part.
Case hardening is specified by "hardness" and "case depth". The case depth can be specified in two ways: total case depth or effective case depth. The total case depth is the true depth of the case. For most alloys, the effective case depth is the depth of the case that has a hardness equivalent of HRC50; however, some alloys specify a ...
Also the advantages of carburizing over carbonitriding are greater case depth (case depths of greater than 0.3 inch are possible), less distortion, and better impact strength. This makes it perfect for high strength and wear applications (e.g. scissors or swords).
This also inversely affects the depth of the case; i.e., a high carbon steel will form a hard, but shallow case. [14] A similar process is the trademarked "Nu-Tride" process, also known incorrectly as the "Kolene" process (which is the company's name), includes a preheat and an intermediate quench cycle.
Surface carburizing, or case hardening, is one example of solid solution strengthening in which the density of solute carbon atoms is increased close to the surface of the steel, resulting in a gradient of carbon atoms throughout the material. This provides superior mechanical properties to the surface of the steel without having to use a ...
Frequently, the term "hardening" is associated with tempered steel. Both processes are used hand in hand when hardening steel. The two part process begins with hardening the steel so that it becomes hard and does not wear over time. However, very often, this process leaves the steel very brittle and susceptible to breaking during use.