When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet architecture and a possible modification. On the top is half of the original AlexNet (which is split into two halves, one per GPU). On the bottom is the same architecture but with the last "projection" layer replaced by another one that projects to fewer outputs.

  4. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    These were removed after training was complete. This was later solved by the ResNet architecture. The architecture consists of three parts stacked on top of one another: [2] The stem (data ingestion): The first few convolutional layers perform data preprocessing to downscale images to a smaller size.

  5. VGGNet - Wikipedia

    en.wikipedia.org/wiki/VGG-19

    VGG module architecture compared to AlexNet architecture. The VGGNets are a series of convolutional neural networks (CNNs) developed by the Visual Geometry Group (VGG) at the University of Oxford. The VGG family includes various configurations with different depths, denoted by the letter "VGG" followed by the number of weight layers.

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In the realm of image processing, ANNs are employed in tasks such as image classification, object recognition, and image segmentation. For instance, deep convolutional neural networks (CNNs) have been important in handwritten digit recognition, achieving state-of-the-art performance. [ 244 ]

  7. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale, University of California, Berkeley, and Stanford University. In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.

  8. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The above architecture turns an image into a sequence of vector representations. To use these for downstream applications, an additional head needs to be trained to interpret them. For example, to use it for classification, one can add a shallow MLP on top of it that outputs a probability distribution over classes.

  9. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Images Classification 2009 [18] [36] A. Krizhevsky et al. CIFAR-100 Dataset Like CIFAR-10, above, but 100 classes of objects are given. Classes labelled, training set splits created. 60,000 Images Classification 2009 [18] [36] A. Krizhevsky et al. CINIC-10 Dataset A unified contribution of CIFAR-10 and Imagenet with 10 classes, and 3 splits.