When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  3. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    A critical requirement of the Lorentz transformations is the invariance of the speed of light, a fact used in their derivation, and contained in the transformations themselves. If in F the equation for a pulse of light along the x direction is x = ct , then in F ′ the Lorentz transformations give x ′ = ct ′ , and vice versa, for any − c ...

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Derivation of Lorentz transformation using time dilation and length contraction Now substituting the length contraction result into the Galilean transformation (i.e. x = ℓ ), we have: x ′ γ = x − v t {\displaystyle {\frac {x'}{\gamma }}=x-vt}

  5. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    A derivation for the transformation of the Lorentz force for the particular case u = 0 is given here. [4] A more general one can be seen here. [5] The transformations in this form can be made more compact by introducing the electromagnetic tensor (defined below), which is a covariant tensor.

  6. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates and ′ of the Lorentz transformation with respect to and ′, from which the transformation of three-velocity (also called velocity-addition formula) between and ′ follows, and eventually by another differentiation with respect to and ′ the transformation of three-acceleration ...

  7. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.

  8. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    The transformation properties of the electromagnetic field tensor, including invariance of electric charge, are then used to transform to the lab frame, and the resulting expression (again Lorentz force law) is interpreted in the spirit of Newton's second law, leading to the correct expression for the relativistic three- momentum. The ...

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    The quantities E, p, E ′, p ′ are all related by a Lorentz transformation. The relation allows one to sidestep Lorentz transformations when determining only the magnitudes of the energy and momenta by equating the relations in the different frames. Again in flat spacetime, this translates to;