When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...

  3. Sigma approximation - Wikipedia

    en.wikipedia.org/wiki/Sigma_approximation

    An m-1-term, σ-approximated summation for a series of period T can be written as follows: = + = (⁡) [⁡ + ⁡ ()], in terms of the normalized sinc function: ⁡ = ⁡. and are the typical Fourier Series coefficients, and p, a non negative parameter, determines the amount of smoothening applied, where higher values of p further reduce the ...

  4. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.

  5. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    At about the same time, the Egyptian Rhind Mathematical Papyrus (dated to the Second Intermediate Period, c. 1600 BCE, although stated to be a copy of an older, Middle Kingdom text) implies an approximation of π as 256 ⁄ 81 ≈ 3.16 (accurate to 0.6 percent) by calculating the area of a circle via approximation with the octagon.

  6. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Since the 1980s, his series have become the basis for the fastest algorithms currently used by Yasumasa Kanada and the Chudnovsky brothers to compute π. 1946 D. F. Ferguson: Made use of a desk calculator [24] 620: 1947 Ivan Niven: Gave a very elementary proof that π is irrational: January 1947 D. F. Ferguson: Made use of a desk calculator [24 ...

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .

  8. Madhava series - Wikipedia

    en.wikipedia.org/wiki/Madhava_series

    The specific value ⁡ = can be used to calculate the circle constant π, and the arctangent series for 1 is conventionally called Leibniz's series. In recognition of Madhava's priority , in recent literature these series are sometimes called the Madhava–Newton series , [ 4 ] Madhava–Gregory series , [ 5 ] or Madhava–Leibniz series [ 6 ...

  9. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [ 3 ] The special case of the arctangent of ⁠ 1 {\displaystyle 1} ⁠ is traditionally called the Leibniz formula for π , or recently sometimes the Mādhava–Leibniz formula :