Search results
Results From The WOW.Com Content Network
A space-filling model of n-octane, the straight chain (normal) hydrocarbon composed of 8 carbons and 18 hydrogens, formulae: CH 3 CH 2 (CH 2) 4 CH 2 CH 3 or C 8 H 18.Note, the representative shown is of a single conformational "pose" of a population of molecules, which, because of low Gibbs energy barriers to rotation about its carbon-carbon bonds (giving the carbon "chain" great flexibility ...
There are many natural examples of space-filling, or rather sphere-filling, curves in the theory of doubly degenerate Kleinian groups. For example, Cannon & Thurston (2007) showed that the circle at infinity of the universal cover of a fiber of a mapping torus of a pseudo-Anosov map is a sphere-filling curve.
Space-filling model of formic acid. Hydrogen is white, carbon is black, and oxygen is red. In the space-filling model, atoms are drawn as solid spheres to suggest the space they occupy, in proportion to their van der Waals radii. Atoms that share a bond overlap with each other.
model of liquid water Robert Corey, Linus Pauling, Walter Koltun (CPK coloring) 1951 Space-filling models of alpha-helix, etc. Pauling's "Nature of the Chemical Bond" covered all aspects of molecular structure and influenced many aspects of models Francis Crick and James D. Watson: 1953 spikes, flat templates and connectors with screws model of DNA
The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.
Methane, CH 4, space-filling, van der Waals-based representation, carbon (C ) in black, hydrogen (H) in white.In chemistry, a space-filling model is a type of three-dimensional (3D) molecular model where the atoms are represented by spheres whose radii are, either as van der Waals radii or otherwise, proportional to the radii of the atoms.
Because it is space-filling, its Hausdorff dimension is 2 (precisely, its image is the unit square, whose dimension is 2 in any definition of dimension; its graph is a compact set homeomorphic to the closed unit interval, with Hausdorff dimension 1). The Hilbert curve is constructed as a limit of piecewise linear curves.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2. Other names include half cubic honeycomb, half cubic cellulation, or tetragonal disphenoidal cellulation.