Ads
related to: how to calculate coordination no of events in science worksheet
Search results
Results From The WOW.Com Content Network
In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand .
For the special case of transition metal clusters, ligands are added to the metal centers to give the metals reasonable coordination numbers, and if any hydrogen atoms are present they are placed in bridging positions to even out the coordination numbers of the vertices. In general, closo structures with n vertices are n-vertex polyhedra.
For typical ionic solids, the cations are smaller than the anions, and each cation is surrounded by coordinated anions which form a polyhedron.The sum of the ionic radii determines the cation-anion distance, while the cation-anion radius ratio + / (or /) determines the coordination number (C.N.) of the cation, as well as the shape of the coordinated polyhedron of anions.
This diagram is for octahedral interstices (coordination number six): 4 anions in the plane shown, 1 above the plane and 1 below. The stability limit is at r C /r A = 0.414. The radius ratio rule defines a critical radius ratio for different crystal structures, based on their coordination geometry. [1]
The coordination geometry depends on the number, not the type, of ligands bonded to the metal centre as well as their locations. The number of atoms bonded is the coordination number . The geometrical pattern can be described as a polyhedron where the vertices of the polyhedron are the centres of the coordinating atoms in the ligands.
If the structure is not known, the average bond valence, S a can be calculated from the atomic valence, V, if the coordination number, N, of the atom is known using Eq. 3. = / (Eq. 3) If the coordination number is not known, a typical coordination number for the atom can be used instead.
The d electron count or number of d electrons is a chemistry formalism used to describe the electron configuration of the valence electrons of a transition metal center in a coordination complex. [ 1 ] [ 2 ] The d electron count is an effective way to understand the geometry and reactivity of transition metal complexes.
In coordination chemistry, the ligand cone angle (θ) is a measure of the steric bulk of a ligand in a transition metal coordination complex. It is defined as the solid angle formed with the metal at the vertex of a cone and the outermost edge of the van der Waals spheres of the ligand atoms at the perimeter of the base of the cone.