When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Therefore, to prove that Fermat's equation has no solutions for n > 2, it suffices to prove that it has no solutions for n = 4 and for all odd primes p. For any such odd exponent p, every positive-integer solution of the equation a p + b p = c p corresponds to a general integer solution to the equation a p + b p + c p = 0.

  3. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In other words, it was necessary to prove only that the equation a n + b n = c n has no positive integer solutions (a, b, c) when n is an odd prime number. This follows because a solution (a, b, c) for a given n is equivalent to a solution for all the factors of n. For illustration, let n be factored into d and e, n = de. The general equation a ...

  4. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...

  5. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions. [3] [4] Typically, one shows that if a solution to a problem existed, which in some sense was related to one or more natural numbers, it would necessarily imply that a second solution ...

  6. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    In general, a system with fewer equations than unknowns has infinitely many solutions, but it may have no solution. Such a system is known as an underdetermined system. In general, a system with the same number of equations and unknowns has a single unique solution. In general, a system with more equations than unknowns has no solution.

  8. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    So, if one starts from a solution in terms of radicals, one gets an increasing sequence of fields such that the last one contains the solution, and each is a normal extension of the preceding one with a Galois group that is cyclic. Conversely, if one has such a sequence of fields, the equation is solvable in terms of radicals.

  9. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    When an equation contains several unknowns, and when one has several equations with more unknowns than equations, the solution set is often infinite. In this case, the solutions cannot be listed. For representing them, a parametrization is often useful, which consists of expressing the solutions in terms of some of the unknowns or auxiliary ...