Search results
Results From The WOW.Com Content Network
In other words, it was necessary to prove only that the equation a n + b n = c n has no positive integer solutions (a, b, c) when n is an odd prime number. This follows because a solution (a, b, c) for a given n is equivalent to a solution for all the factors of n. For illustration, let n be factored into d and e, n = de. The general equation a ...
As shown below, his proof is equivalent to demonstrating that the equation x 4 − y 4 = z 2. has no primitive solutions in integers (no pairwise coprime solutions). In turn, this is sufficient to prove Fermat's Last Theorem for the case n = 4, since the equation a 4 + b 4 = c 4 can be written as c 4 − b 4 = (a 2) 2.
Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1]
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Every homogeneous system has at least one solution, known as the zero (or trivial) solution, which is obtained by assigning the value of zero to each of the variables. If the system has a non-singular matrix (det(A) ≠ 0) then it is also the only solution. If the system has a singular matrix then there is a solution set with an infinite number ...
Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p ⁄ q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n.
For M ≥ N, there may be no solution other than all values being 0. There will be an infinitude of other solutions only when the system of equations has enough dependencies (linearly dependent equations) that the number of independent equations is at most N − 1.