When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    The thin shear layer which develops on an oscillating body is an example of a Stokes boundary layer, while the Blasius boundary layer refers to the well-known similarity solution near an attached flat plate held in an oncoming unidirectional flow and Falkner–Skan boundary layer, a generalization of Blasius profile.

  3. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    In fluid dynamics, flow separation or boundary layer separation is the detachment of a boundary layer from a surface into a wake. [1] A boundary layer exists whenever there is relative movement between a fluid and a solid surface with viscous forces present in the layer of fluid close to the surface. The flow can be externally, around a body ...

  4. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    Thus every shear matrix has an inverse, and the inverse is simply a shear matrix with the shear element negated, representing a shear transformation in the opposite direction. In fact, this is part of an easily derived more general result: if S is a shear matrix with shear element λ , then S n is a shear matrix whose shear element is simply n λ .

  5. Falkner–Skan boundary layer - Wikipedia

    en.wikipedia.org/wiki/Falkner–Skan_boundary_layer

    The basis of the Falkner-Skan approach are the Prandtl boundary layer equations. Ludwig Prandtl [2] simplified the equations for fluid flowing along a wall (wedge) by dividing the flow into two areas: one close to the wall dominated by viscosity, and one outside this near-wall boundary layer region where viscosity can be neglected without significant effects on the solution.

  6. Laminar sublayer - Wikipedia

    en.wikipedia.org/wiki/Laminar_sublayer

    The laminar sublayer, also called the viscous sublayer, is the region of a mainly-turbulent flow that is near a no-slip boundary and in which viscous shear stresses are important. As such, it is a type of boundary layer. The existence of the viscous sublayer can be understood in that the flow velocity decreases towards the no-slip boundary.

  7. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  8. Shearing layers - Wikipedia

    en.wikipedia.org/wiki/Shearing_layers

    Shearing layers is a concept coined by architect Frank Duffy, which was later elaborated by Stewart Brand in his book, How Buildings Learn: What Happens After They're Built (Brand, 1994), and refers to buildings as composed of several layers of change. The concept has been adopted by a number of technology vendors to also describe the different ...

  9. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    The velocity profile near the boundary of a flow (see Law of the wall) Transport of sediment in a channel; Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of ...