Search results
Results From The WOW.Com Content Network
On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems (PDF) (Thesis). Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !
Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5 . The term was originally used to distinguish this type of fraction from the sexagesimal fraction used in astronomy. [10] Common fractions can be positive or negative, and they can be proper or improper (see below).
Applying the fundamental recurrence formulas we find that the successive numerators A n are {1, 2, 3, 5, 8, 13, ...} and the successive denominators B n are {1, 1, 2, 3, 5, 8, ...}, the Fibonacci numbers. Since all the partial numerators in this example are equal to one, the determinant formula assures us that the absolute value of the ...
the roots of this irreducible polynomial can be calculated as [5] 1 ± 2 1 / 6 , 1 ± − 1 ± 3 i 2 1 / 3 . {\displaystyle 1\pm 2^{1/6},1\pm {\frac {\sqrt {-1\pm {\sqrt {3}}i}}{2^{1/3}}}.} Even in the case of quartic polynomials , where there is an explicit formula for the roots, solving using the decomposition often gives a simpler form.
According to an anecdote of uncertain reliability, [1] in primary school Carl Friedrich Gauss reinvented the formula (+) for summing the integers from 1 through , for the case =, by grouping the numbers from both ends of the sequence into pairs summing to 101 and multiplying by the number of pairs. Regardless of the truth of this story, Gauss ...
Application of the second rule to the region of 3 points generates 1/3 Simpson's rule, 4 points - 3/8 rule. These rules are very much similar to the alternative extended Simpson's rule. The coefficients within the major part of the region being integrated are one with non-unit coefficients only at the edges.
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets