Search results
Results From The WOW.Com Content Network
The Bekenstein bound limits the amount of information that can be stored within a spherical volume to the entropy of a black hole with the same surface area. Thermodynamics limit the data storage of a system based on its energy, number of particles and particle modes. In practice, it is a stronger bound than the Bekenstein bound.
The algorithm for deciding this is conceptually simple: it constructs (the description of) a new program t taking an argument n, which (1) first executes program a on input i (both a and i being hard-coded into the definition of t), and (2) then returns the square of n. If a(i) runs forever, then t never gets to step (2), regardless of n.
In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.
When a network partition failure happens, it must be decided whether to do one of the following: cancel the operation and thus decrease the availability but ensure consistency; proceed with the operation and thus provide availability but risk inconsistency. Note this doesn't necessarily mean that system is highly available to its users. [5]
Here the loop condition is defined using some value UNKNOWN, where the value of UNKNOWN is not known (e.g. defined by the user's input when the program is executed). Here the termination analysis must take into account all possible values of UNKNOWN and find out that in the possible case of UNKNOWN = 0 (as in the original example) the ...
One can instead limit a program to executing only for a fixed period of time or limit the power of flow-control instructions (for example, providing only loops that iterate over the items of an existing array). However, another theorem shows that there are problems solvable by Turing-complete languages that cannot be solved by any language with ...
respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.
This program is one of all the programs on which the halting function h is defined. The next step of the proof shows that h(e,e) will not have the same value as f(e,e). It follows from the definition of g that exactly one of the following two cases must hold: f(e,e) = 0 and so g(e) = 0. In this case program e halts on input e, so h(e,e) = 1.