When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the row space is called the rank of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...

  4. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  5. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    Each column containing a leading 1 has zeros in all entries above the leading 1. While a matrix may have several echelon forms, its reduced echelon form is unique. Given a matrix in reduced row echelon form, if one permutes the columns in order to have the leading 1 of the i th row in the i th column, one gets a matrix of the form

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996 , §5.2) call Q 1 R 1 the thin QR factorization of A ; Trefethen and Bau call this the reduced QR factorization . [ 1 ]

  8. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For the case of column vector c and row vector r, each with m components, the formula allows quick calculation of the determinant of a matrix that differs from the identity matrix by a matrix of rank 1: (+) = +. More generally, [14] for any invertible m × m matrix X,

  9. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    Matrix completion of a partially revealed 5 by 5 matrix with rank-1. Left: observed incomplete matrix; Right: matrix completion result. Matrix completion is the task of filling in the missing entries of a partially observed matrix, which is equivalent to performing data imputation in statistics. A wide range of datasets are naturally organized ...