When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple ...

  3. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    XGBoost works as Newton–Raphson in function space unlike gradient boosting that works as gradient descent in function space, a second order Taylor approximation is used in the loss function to make the connection to Newton–Raphson method. A generic unregularized XGBoost algorithm is:

  4. Boosting (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Boosting_(machine_learning)

    scikit-learn, an open source machine learning library for Python; Orange, a free data mining software suite, module Orange.ensemble; Weka is a machine learning set of tools that offers variate implementations of boosting algorithms like AdaBoost and LogitBoost

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [ 4 ] [ 5 ] It is based on decision tree algorithms and used for ranking , classification and other machine learning tasks.

  7. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [7] It works on Linux , Windows , macOS , and is available in Python , [ 8 ] R , [ 9 ] and models built using CatBoost can be used for predictions in C++ , Java ...

  8. LogitBoost - Wikipedia

    en.wikipedia.org/wiki/LogitBoost

    In machine learning and computational learning theory, LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor Hastie, and Robert Tibshirani.. The original paper casts the AdaBoost algorithm into a statistical framework. [1]

  9. AdaBoost - Wikipedia

    en.wikipedia.org/wiki/AdaBoost

    For example, in the two-class problem, the sign of the weak learner's output identifies the predicted object class and the absolute value gives the confidence in that classification. Each weak learner produces an output hypothesis h {\displaystyle h} which fixes a prediction h ( x i ) {\displaystyle h(x_{i})} for each sample in the training set.