Search results
Results From The WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
In scientific visualization, Lagrangian–Eulerian advection is a technique mainly used for the visualization of unsteady flows. The computer graphics generated by the technique can help scientists visualize changes in velocity fields. This technique uses a hybrid Lagrangian and Eulerian specification of the flow field.
An example comes from considering a scalar field in D-dimensional Minkowski space.Consider a Lagrangian density given by (,).The action is = (,). The Euler–Lagrange equation for this action can be found by varying the field and its derivative and setting the variation to zero, and is:
Derivation of the Lagrangian and Eulerian finite strain tensors. A measure of deformation is the difference between the squares of the differential line element , in the undeformed configuration, and , in the deformed configuration (Figure 2). Deformation has occurred if the difference is non zero, otherwise a rigid-body displacement has occurred.
Semi-Lagrangian schemes use a regular (Eulerian) grid, just like finite difference methods. The idea is this: at every time step the point where a parcel originated from is calculated. An interpolation scheme is then utilized to estimate the value of the dependent variable at the grid points surrounding the point where the particle originated from.
The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation. [ 3 ] For example, in fluid dynamics , the velocity field is the flow velocity , and the quantity of interest might be the temperature of the fluid.