Search results
Results From The WOW.Com Content Network
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
10 kPa 1.5 psi Pressure increase per meter of a water column [26] 10 kPa 1.5 psi Decrease in air pressure when going from Earth sea level to 1000 m elevation [citation needed] +13 kPa +1.9 psi High air pressure for human lung, measured for trumpet player making staccato high notes [48] < +16 kPa +2.3 psi
In scuba diving, bar is also the most widely used unit to express pressure, e.g. 200 bar being a full standard scuba tank, and depth increments of 10 metre of seawater being equivalent to 1 bar of pressure. Many engineers worldwide use the bar as a unit of pressure because, in much of their work, using pascals would involve using very large ...
The placement consisted of 10,251 cubic yards of concrete placed in 58.5 hours using two concrete pumps and two dedicated concrete batch plants. Upon curing, this placement allows the 50,180-square-foot (4,662 m 2 ) cofferdam to be dewatered approximately 26 feet (7.9 m) below sea level to allow the construction of the Inner Harbor Navigation ...
The meter is "read" as a differential pressure head in centimeters or inches of water. The venturi meter and manometer is a common type of flow meter which can be used in many fluid applications to convert differential pressure heads into volumetric flow rate , linear fluid speed , or mass flow rate using Bernoulli's principle .
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed. All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
At Titanic depths, some 12,500 feet down, the water pressure is nearly 400 times more than at the ocean's surface — some 6,000 pounds would have been pressing down on every square inch of Titan ...
Pressure may also be expressed in terms of standard atmospheric pressure; the unit atmosphere (atm) is equal to this pressure, and the torr is defined as 1 ⁄ 760 of this. Manometric units such as the centimetre of water , millimetre of mercury , and inch of mercury are used to express pressures in terms of the height of column of a particular ...