When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    A condition can be both necessary and sufficient. For example, at present, "today is the Fourth of July" is a necessary and sufficient condition for "today is Independence Day in the United States". Similarly, a necessary and sufficient condition for invertibility of a matrix M is that M has a nonzero determinant.

  3. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).

  4. Interchange of limiting operations - Wikipedia

    en.wikipedia.org/wiki/Interchange_of_limiting...

    It is relatively rare for such sufficient conditions to be also necessary, so that a sharper piece of analysis may extend the domain of validity of formal results. Professionally speaking, therefore, analysts push the envelope of techniques, and expand the meaning of well-behaved for a given context. G. H.

  5. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    An example traditionally used by logicians contrasting sufficient and necessary conditions is the statement "If there is fire, then oxygen is present". An oxygenated environment is necessary for fire or combustion, but simply because there is an oxygenated environment does not necessarily mean that fire or combustion is occurring.

  6. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    In mathematics, Hall's marriage theorem, proved by Philip Hall (), is a theorem with two equivalent formulations.In each case, the theorem gives a necessary and sufficient condition for an object to exist:

  7. Specht's theorem - Wikipedia

    en.wikipedia.org/wiki/Specht's_theorem

    Thus, tr AA* = tr BB* is a necessary condition for unitary equivalence, but it is not sufficient. Specht's theorem gives infinitely many necessary conditions which together are also sufficient. The formulation of the theorem uses the following definition. A word in two variables, say x and y, is an expression of the form

  8. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    The necessary conditions are sufficient for optimality if the objective function of a maximization problem is a differentiable concave function, the inequality constraints are differentiable convex functions, the equality constraints are affine functions, and Slater's condition holds. [11]

  9. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    Hierholzer proved this is a sufficient condition in a paper published in 1873. This leads to the following necessary and sufficient statement for what a finite graph must have to be Eulerian: An undirected connected finite graph is Eulerian if and only if every vertex of G has even degree. [20]