Search results
Results From The WOW.Com Content Network
The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
Plastic limit theorems in continuum mechanics provide two bounds [1] that can be used to determine whether material failure is possible by means of plastic deformation for a given external loading scenario. According to the theorems, to find the range within which the true solution must lie, it is necessary to find both a stress field that ...
By the least-upper-bound property, S has a least upper bound c ∈ [a, b]. Hence, c is itself an element of some open set U α, and it follows for c < b that [a, c + δ] can be covered by finitely many U α for some sufficiently small δ > 0. This proves that c + δ ∈ S and c is not an upper bound for S. Consequently, c = b.
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
The element k is called an upper bound of S. The concepts of bounded below and lower bound are defined similarly. (See also upper and lower bounds.) A subset S of a partially ordered set P is called bounded if it has both an upper and a lower bound, or equivalently, if it is contained in an interval.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
In calculus and mathematical analysis the limits of integration (or bounds of integration) of the integral () of a Riemann integrable function f {\displaystyle f} defined on a closed and bounded interval are the real numbers a {\displaystyle a} and b {\displaystyle b} , in which a {\displaystyle a} is called the lower limit and b {\displaystyle ...