Search results
Results From The WOW.Com Content Network
propositional logic, Boolean algebra The statement ¬ A {\displaystyle \lnot A} is true if and only if A is false. A slash placed through another operator is the same as ¬ {\displaystyle \neg } placed in front.
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
The material conditional (also known as material implication) is an operation commonly used in logic.When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
While circumscription was initially defined in the first-order logic case, the particularization to the propositional case is easier to define. [4] Given a propositional formula, its circumscription is the formula having only the models of that do not assign a variable to true unless necessary.
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...
connectives for propositional variables. Some many-valued logics may have incompatible definitions of equivalence and order (entailment). Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic.
In classical logic, disjunction is given a truth functional semantics according to which a formula is true unless both and are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction .