When.com Web Search

  1. Ad

    related to: sp3 sp2 hybridization example equation chemistry

Search results

  1. Results From The WOW.Com Content Network
  2. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In traditional hybridisation theory, the hybrid orbitals are all equivalent. [12] [27] Namely the atomic s and p orbital(s) are combined to give four sp i 3 = 1 ⁄ √ 4 (s + √ 3 p i) orbitals, three sp i 2 = 1 ⁄ √ 3 (s + √ 2 p i) orbitals, or two sp i = 1 ⁄ √ 2 (s + p i) orbitals. These combinations are chosen to satisfy two ...

  4. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  5. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    In organic chemistry, molecules which have a trigonal pyramidal geometry are sometimes described as sp 3 hybridized. The AXE method for VSEPR theory states that the classification is AX 3 E 1. Phosphine, an example of a molecule with a trigonal pyramidal geometry.

  6. Bent bond - Wikipedia

    en.wikipedia.org/wiki/Bent_bond

    In these compounds, it is not possible for the carbon atoms to assume the 109.5° bond angles with standard sp 3 hybridization. Increasing the p-character to sp 5 (i.e. 1 ⁄ 6 s-density and 5 ⁄ 6 p-density) [5] makes it possible to reduce the bond angles to 60°. At the same time, the carbon-to-hydrogen bonds gain more s-character, which ...

  7. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  8. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    2 O is sp 3 hybridized in which the 2s atomic orbital and the three 2p orbitals of oxygen are hybridized to form four new hybridized orbitals which then participate in bonding by overlapping with the hydrogen 1s orbitals. As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with ...

  9. Trigonal planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_planar_molecular...

    In organic chemistry, planar, three-connected carbon centers that are trigonal planar are often described as having sp 2 hybridization. [2] [3] Nitrogen inversion is the distortion of pyramidal amines through a transition state that is trigonal planar. Pyramidalization is a distortion of this molecular shape towards a tetrahedral molecular ...