When.com Web Search

  1. Ads

    related to: all factors for 42 and 36 in math practice

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. A powerful number (also called squareful) has multiplicity above 1 for all prime

  3. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100:

  4. Taxman (mathematical game) - Wikipedia

    en.wikipedia.org/wiki/Taxman_(mathematical_game)

    In some versions, the taxman may neglect to collect all of the factors of the tax payer's number, or may attempt to collect a factor incorrectly. The taxman may or may not lose points for missing factors or choosing incorrectly, and the tax payer may or may not be able to steal a factor that the taxman misses. [4] [5] [6] [8]

  5. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    For n ≥ 2, a(n) is the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached; a(n) = −1 if no prime is ever reached. A037274

  6. 42 (number) - Wikipedia

    en.wikipedia.org/wiki/42_(number)

    42 is a pronic number, [1] an abundant number [2] as well as a highly abundant number, [3] a practical number, [4] an admirable number, [5] and a Catalan number. [6]The 42-sided tetracontadigon is the largest such regular polygon that can only tile a vertex alongside other regular polygons, without tiling the plane.

  7. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    The number of domino tilings of a 4×4 checkerboard is 36. [10] Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an Erdős–Woods number. [11] The sum of the integers from 1 to 36 is 666 (see number of the beast). 36 is also a ...