Search results
Results From The WOW.Com Content Network
[a] Like the set of natural numbers, the set of integers is countably infinite. An integer may be regarded as a real number that can be written without a fractional component . For example, 21, 4, 0, and −2048 are integers, while 9.75, 5 + 1 / 2 , 5/4, and √ 2 are not.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Denotes the set of p-adic integers, where p is a prime number. 2. Sometimes, Z n {\displaystyle \mathbb {Z} _{n}} denotes the integers modulo n , where n is an integer greater than 0.
The set of all integers, {..., −1, 0, 1, 2, ...} is a countably infinite set. The set of all even integers is also a countably infinite set, even if it is a proper subset of the integers. [3] The set of all rational numbers is a countably infinite set as there is a bijection to the set of integers. [3]
the set of natural numbers, irrespective of including or excluding zero, the set of all integers, any infinite subset of the integers, such as the set of all square numbers or the set of all prime numbers, the set of all rational numbers, the set of all constructible numbers (in the geometric sense), the set of all algebraic numbers,
The set of all rational numbers includes the integers since every integer can be written as a fraction with denominator 1. For example −7 can be written −7 / 1 . The symbol for the rational numbers is Q (for quotient), also written .
[note 3] For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of integers. The same is true for every binary operation.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.