When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Chemical potential - Wikipedia

    en.wikipedia.org/wiki/Chemical_potential

    In an ideal solution, the chemical potential of species i (μ i) is dependent on temperature and pressure. μ i0 (T, P) is defined as the chemical potential of pure species i. Given this definition, the chemical potential of species i in an ideal solution is

  5. Thermodynamic potential - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_potential

    A thermodynamic potential (or more accurately, a thermodynamic potential energy) [1] [2] is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics , where potential energy is defined as capacity to do work, similarly different potentials have different meanings.

  6. Fugacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity

    For an ideal gas the equation of state can be written as =, where R is the ideal gas constant.The differential change of the chemical potential between two states of slightly different pressures but equal temperature (i.e., dT = 0) is given by = = = ⁡, where ln p is the natural logarithm of p.

  7. Equation of state - Wikipedia

    en.wikipedia.org/wiki/Equation_of_state

    At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures.

  8. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    The Helmholtz free energy is defined as [3], where . F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs),; U is the internal energy of the system (SI: joules, CGS: ergs),

  9. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    Average occupancy is shown versus energy relative to the system chemical potential , where is the system temperature, and is the Boltzmann constant. Maxwell–Boltzmann statistics is used to derive the Maxwell–Boltzmann distribution of an ideal gas.