Ad
related to: radar block diagram
Search results
Results From The WOW.Com Content Network
AN/FPS-16 Radar Set block diagram. The AN/FPS-16 is a C-band monopulse radar utilizing a waveguide hybrid-labyrinth comparator to develop angle track information. The comparator receives RF signals from an array of four feed horns which are located at the focal point of a 12-foot (4 m) parabolic reflector.
The Eurofighter Typhoon combat aircraft with its nose fairing removed, revealing its Euroradar CAPTOR AESA radar antenna. An active electronically scanned array (AESA) is a type of phased-array antenna, which is a computer-controlled antenna array in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. [1]
APAR is typically paired with Thales Nederland's SMART-L passive electronically scanned array radar (which operates at L band frequencies). SMART-L is a long-range Volume Search Radar (VSR) that is able to provide volume search and tracking out to 480 km. The whole system is called Anti-Air Warfare Systems (AAWS), and is based on the NATO Anti ...
Bistatic radar block diagram Bistatic Radar Passive Receiver System from NCSIST of Taiwan. Bistatic radar is a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a conventional radar in which the transmitter and receiver are co-located is called a ...
The world's first airborne monopulse radar system was the British Ferranti-designed AIRPASS system which went into service in 1960 on the RAF's English Electric Lightning interceptor aircraft. An early monopulse radar development, in 1958, was the AN/FPS-16, on which NRL and RCA collaborated. The earliest version, XN-1, utilised a metal plate lens.
Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect , which causes the received signal to have a different frequency from the transmitted signal ...
To scan a portion of the sky, a non-PESA radar antenna must be physically moved to point in different directions. In contrast, the beam of a PESA radar can rapidly be changed to point in a different direction, simply by electrically adjusting the phase differences between different elements of the passive electronically scanned array (PESA).
The diagram on the left shows the effect on the spectrum if a trapezoid pulse profile is adopted. It can be seen that the energy in the sidebands is significantly reduced compared to the main lobe and the amplitude of the main lobe is increased. Radar transmission frequency spectrum of a cosine pulse profile