When.com Web Search

  1. Ads

    related to: elasticity sample problems physics equation solver examples math

Search results

  1. Results From The WOW.Com Content Network
  2. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  3. Stress functions - Wikipedia

    en.wikipedia.org/wiki/Stress_functions

    The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]

  4. Elasticity of a function - Wikipedia

    en.wikipedia.org/wiki/Elasticity_of_a_function

    An example of semi-elasticity is modified duration in bond trading. The opposite definition is sometimes used in the literature. That is, the term "semi-elasticity" is also sometimes used for the change (not percentage-wise) in f(x) in terms of a percentage change in x [9] which would be

  5. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    The problem of compatibility in continuum mechanics involves the determination of allowable single-valued continuous fields on simply connected bodies. More precisely, the problem may be stated in the following manner. [5] Figure 1. Motion of a continuum body. Consider the deformation of a body shown in Figure 1.

  6. Michell solution - Wikipedia

    en.wikipedia.org/wiki/Michell_solution

    In continuum mechanics, the Michell solution is a general solution to the elasticity equations in polar coordinates (,) developed by John Henry Michell in 1899. [1] The solution is such that the stress components are in the form of a Fourier series in θ {\displaystyle \theta } .

  7. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...