Search results
Results From The WOW.Com Content Network
The specificity of absorption spectra allows compounds to be distinguished from one another in a mixture, making absorption spectroscopy useful in wide variety of applications. For instance, Infrared gas analyzers can be used to identify the presence of pollutants in the air, distinguishing the pollutant from nitrogen, oxygen, water, and other ...
A Python library HAPI (HITRAN Application Programming Interface) has been developed which serves as a tool for absorption and transmission calculations as well as comparisons of spectroscopic data sets. HAPI extends the functionality of the main site, in particular, for the calculation of spectra using several types of line shape calculations ...
Typically, a Tauc plot shows the quantity hν (the photon energy) on the abscissa (x-coordinate) and the quantity (αhν) 1/2 on the ordinate (y-coordinate), where α is the absorption coefficient of the material. Thus, extrapolating this linear region to the abscissa yields the energy of the optical bandgap of the amorphous material.
The use of the term remission spectroscopy is relatively recent, and found first use in applications related to medicine and biochemistry. While the term is becoming more common in certain areas of absorption spectroscopy, the term diffuse reflectance is firmly entrenched, as in diffuse reflectance infrared Fourier transform spectroscopy ...
In atmospheric chemistry, differential optical absorption spectroscopy (DOAS) is used to measure concentrations of trace gases. When combined with basic optical spectrometers such as prisms or diffraction gratings and automated, ground-based observation platforms, it presents a cheap and powerful means for the measurement of trace gas species ...
Saturated absorption spectroscopy measures the transition frequency of an atom or molecule between its ground state and an excited state. In saturated absorption spectroscopy, two counter-propagating, overlapped laser beams are sent through a sample of atomic gas.
The spectra of basic, acid and intermediate pH solutions are shown. The analytical concentration of the dye is the same in all solutions. In spectroscopy, an isosbestic point is a specific wavelength, wavenumber or frequency at which the total absorbance of a sample does not change during a chemical reaction or a physical change of the sample ...
The technique makes use of the atomic absorption spectrum of a sample in order to assess the concentration of specific analytes within it. It requires standards with known analyte content to establish the relation between the measured absorbance and the analyte concentration and relies therefore on the Beer–Lambert law.